Magnetic Levitation Energy Harvester

(1) Calc the acceleration of the central magnet

$$a_z = \frac{1}{m}(-k_1z - k_3z^3 - cv - \alpha i) - g + \Omega^2 Asin(\Omega t)$$

(2) vertical velocity and displacement of the central magnet

$$\Delta v = a\Delta t$$
$$v = v + \Delta v$$
$$\Delta z = v\Delta t$$
$$z = z + \Delta z$$

These lines may appear a little strange. The first two will be coded as **velyZ** += accelZ*dT; and the last two will be coded as dispZCentre += velyZ*dT;

(3) Calculate the rate of change of current in the coil

$$\frac{di}{dt} = \frac{1}{L} \left(\alpha v - (R_C + R_L) \right)$$

and the current in the coil will be coded as **current += dCurrentDt*dT** where **dCurrentDt** is the above rate of change of current in the coil.

(4) Finally we code the power as current squared times load resistance **power = RL*current**2**;

Math	Code	le Meaning	
Δt	<mark>deltaT</mark>		0.01
t	<mark>time</mark>		0
Z	dispZCentre	vertical displacement from equilibrium	
v	velyZ	vertical velocity	
а	accelZ	vertical acceleration	
i	current	current	
di	dCurrentDt	rate of change of current	0
\overline{dt}			

Variables

Parameters

Math	Code	Default	Meaning
m	mmass	0.09	mass of pendulum
g	gravity	9.8	gravity
k_1	k1	38.7	linear stiffness
k ₃	k3	1.6×10^{5}	non-linear stiffness
С	С	0.054	damping
α	alpha	60	coupling constant
R _c	RC	1200	resistance of coil
R_L	RL	1100	load resistance
β	beta	10	time scaling for slow-down

Sinusoidal drive equation parameters

Α	А	This is internally calculated from the forcingAmplitude	0.01 (metres)
Ω	omegaDrive	This is internally calculated from the forcingFrequency	11.1 (Hertz)

If you wish to calculate the peal power (rather than the instantaneous power) then you could perform a calculation like this, resetting to zero when the current changes direction

if(power > peakPower) peakPower = power; if(current < 0) peakPower = 0.0;</pre>