
Project Truss Bridges

Introduction
There are various ways to design bridges. Most modern bridges are designed using advanced modelling

and simulation software which we do not have access to. Yet the design principles used today are based

upon the most efficient use of materials, while achieving an aesthetic appealing and sexy outcome. In the

Victorian era, attention to sexy aesthetics was not the issue, the most efficient use of materials which

could produce a viable structure was paramount. Truss bridges were developed in this era, to make the

best use of iron. These bridges were designed as a series of straight iron bar links joined together in

connected joints or nodes. The diagrams below show some approaches to spanning a gap. Each of these

structures has a name which you can research.

Running the Engine

The truss is contained in the level SciencePark_Level_Truss.udk. Because it makes use of some c-code you

must run UDK in 32-bit mode.

1) Navigate here C:\UDK\UDK-2015-01\Binaries\Win32

2) Right-click on UDK.exe

3) Choose Send to > Desktop.

4) Right click on icon and select Properties. Add editor to the end of the Target:

MAS14 Simulation Engine

This simulation engine has been developed to allow you to investigate various Truss Bridge designs and to

compare various designs. Unlike the solid iron trusses shown above, the simulation engine represents each

iron link as a spring, and each connection is represented as a ball. The engine therefore magnifies the

deflection of each member so you can see whether the member is in compression (red) or extension

(green) or else does not bear any load (grey). The figure below shows a ‘Warren’ truss where the left and

right bottom nodes are constrained not to move (they could be on pillars). The centre bottom node has a

load force pulling downwards. You can see which link is under compression or extension, and this should

make sense.

Coding the Truss

You can design any truss of your choice. Previous students have chosen 2D trusses, but the engine should

be capable of 3D trusses.

Trusses are coded using our special scripting language. An example of a .txt file to do this is shown below.

Each line of the file starts with a letter which tells the interpreter what the following numbers mean. The

truss shown above was created using this file. The diagram below shows the labelling of the nodes.

Here each node is labelled with the (X,Y,Z) values. These are in metres.

N 2 0 8 0

N 10 0 8 0

N 18 0 8 0

N 6 0 12 0

N 14 0 12 0

L 0 1 0 0

L 0 3 0 0

L 1 0 0 0

L 1 2 0 0

L 1 3 0 0

L 1 4 0 0

L 2 1 0 0

L 2 4 0 0

L 3 0 0 0

L 3 1 0 0

L 3 4 0 0

L 4 1 0 0

L 4 2 0 0

L 4 3 0 0

C 0 1 1 1

C 2 1 1 1

F 1 0 0 -10

E 4 4 4 4

Lines starting with N

These locate the nodes in x-z space e.g the first line locates a

node at x = 2, y = 0 z = 8. The final 0 is not used.

Each line declares a node, starting at index 0. So here we have

nodes 0, 1, 2, 3, 4

Lines starting with L

These establish links between nodes. So the first line indicates

that node 0 is connected to node 1. The second line shows that

node 0 is also connected to node 3. The third line shows that

node 1 is connected to node 0. It is important that if node A is

connected to node B, then you must connect node B to node A.

Lines starting with C

These are the constraints on the nodes, in other words those

nodes which cannot move. These are usually the pillars

supporting the ends of the bridge. The line “C 0 1 1 1” means

that node 0 cannot move in the X,Y,Z directions. It is fixed to a

pillar and to the ground. Same for node 2

Lines starting with F

These are the loads or forces applied to nodes. In this case the

line “F 1 0 0 -10” means that node 1 experience a force Fx=0,

Fy=0, Fz=-10. This is not really necessary since forces can be

applied at run-time.

Line starting with E. Indicates the end of the design file

What and How to Investigate

1) The most obvious thing to do is to design your own truss bridge and subject this to investigation. Better

to compare two truss bridges which have something in common, e.g., they both span the same space

between the banks of a river. Here’s a way of comparing trusses that span the same gap.

Going down the columns, the only thing that changes is height of the structure. Going from left to right,

the extra bars are added into each structure.

So a typical investigation would be to apply a series of loads to the centre bottom node and note down the

deflexion for each load. Then plot this as a graph. Repeat this for other truss designs and make a

comparison.

2) By clicking on any node and using setParam load 10 you can change the load to a range of values, and

you can measure the X,Y,Z disp (displacement) by reading the HUD. An engineer would be interested in

plotting a graph of load (independent variable – along the bottom) and displacement (dependent variable

– up the side).

3) Also you could look at the coloured springs. You will see some patterns here depending on your truss

design. Remember green is in tension and red is in compression.

4) Remember, when you click on a link, it will show you the forces in the link. So you could look at these

forces, and see which ones are large and which ones are small. This will show you which links are carrying

most of the load.

5) You may notice that when you change a load, then the structure will oscillate (vibrate). If you want to

investigate vibrations, then you can slow them down by increasing the node mass.

Changing the Code

1) I need to see some code in your report (look at the grading matrix). A straightforward way to do this

would be to look at the User Interface, including the HUD. If you select a node, apply a load and look at the

HUD you will see a lot of things displayed which are not being used. This is because I was researching this

project. A good idea would be to edit MAS14_Node.uc and delete lines which are not being used. You

might also like to change the colors used. Then you could include your cleaned-up HUD code in your report

to attract credit.

2) You could also extend the SetParam function in MAS14_Node.uc . Currently this looks like this

function SetParam(string paramName,float paramValue){
 WorldInfo.Game.Broadcast(self,paramName@paramValue);

 paramName = Caps(paramName); //capitalize so case insensitive

 if(paramName == Caps("load")){
 self.Load.Z = paramValue;
 }

}

You see that the console command setParam load 10 will set self.load.Z to 10. You could add another if

block to set the X or Y load to a value.

3) I have some other suggestions. Read on

Cleaning up the Truss code
Problem is that the force calculation MAS14P_TrussConfig.uc line 350 does not refer to the link. So when

the link is selected at run-time and its k1 or k3 are changed, nothing happens, since these values are not

being pulled down from the link. This is bad bad OO design.

So to fix, we need to grab the link connecting the two nodes thisNode and linkNode in the inner loop line

336-353. In other words we need something like this, in place of line 350.

 ext = (len - lenOrig);
 findLink(thisNode,linkNode,lk);
 // get ks from the link
 k1 = lk.k1;
 k3 = lk.k3;
 // calc magnitude of force
 forceMag = -1.0*k1*ext +
k3*ext**3;

Of course you will have to write the function findLink which iterates over linkArray and finds the link which

connects thisNode and linkNode. Here’s a template

function findLink(MAS14P_Node nodeP, MAS14P_Node nodeQ, out MAS14P_Link link) {

 local MAS14P_Link lk;
 local int i;

 for(i=0; i<linkArray.length;i++) {

 }
}

You will also need to clean up the MAS14P_Link class:

1) Declare k1 and k3;

2) Change SetParam(…) so it can set k1 and also k3.

Finally back to MAS14P_TrussConfig.uc You will have to set link.k1 = k1 etc in the function

spawnAllLinks(…)

Adding code to log one node over time

1) Declare the iterator variable up top var int itn;

2) Create a function to log the data

function logData() {
 local int m;
 m = int(logInterval/deltaT);
 if(itn % m == 0) logDataRecord();
}

2) make a call to logData() inside computeTimer()

3) Add these lines to Actor_Initialize(…)

 openMatlabFile();
 setLogFileColumnLabels();

4) Add this function somewhere. You will need to decide which variables you want to log.

function setLogFileColumnLabels() {
 columnLabels.length = 0; //empty array.
 columnLabels[0] = "time";
 // Add more labels here

 writeMatlabFileHeaderNew(columnLabels);
}

function logDataRecord() {
 local array<float> dataArray;
 dataArray.length = 0; //empty array.
 dataArray[0] = time;
 // add more here – should match up with your
labels

 writeMatlabFileRecordNew(dataArray);

}

5) Add the following if statement to the function ProcessKey(…)

 if(Key == 'F12'){
 bRunning = false;
 closeMatlabFile();
 }

When you are running, to write the log file out to disk, then cross-hair the brick tower then hit F12. You

should see the simulation stop.

