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Outline of the System 

 

 

 
On the left is a picture of an inverted pendulum on a cart and on the right is a guy on a Segway. These two 

systems are identical where the yellow pendulum bob corresponds to the yellow centre of mass of the guy 

on the right. 

 

Such systems are unstable unless they are controlled, they will fall over; the pendulum will rotate 

clockwise and settle with the bob underneath the cart. The guy will rotate either forwards or backwards 

and will end up on the ground if he is daft. 

 

How are these systems made stable? Think about the inverted pendulum on the left. It will rotate 

clockwise unless the cart moves to the right and gets underneath it, then it is vertical. If it falls to the left 

then the cart moves to the left to get underneath it again. So, in general, the cart must move in the 

direction the bob is falling to get underneath it. The same idea applies to the guy on the Segway.  

 

We must now develop the mathematical model of the inverted pendulum. Once we have that then we can 

code a simulation. We must derive two equations (i) for the rotation of the pendulum about its centre of 

mass (the bob at the top) and (ii) for the horizontal displacement of the cart. We know the routine; we 

have to get expressions for accelerations which give us velocities which give us displacements which we 

use to render our objects in UDK. 

 

First we give the solution, then we explain how it is derived. For small motions around the vertical position 

𝜃 = 0 we obtain the two expressions which we must code. The first is the angular acceleration of the 

pendulum bob which we use to calculate its angular velocity, and hence the angle. In these expressions M 

is the mass of the cart and m is the mass of the pendulum bob. 

 



𝛼 =
(𝑀 + 𝑚)𝑔𝜃 − 𝐹

𝑀𝐿
 

 

Then we have the acceleration of the cart which we use to calculate its linear velocity and so its 

displacement. 

𝑎 =
−𝑚𝑔𝜃 + 𝐹

𝑀
 

 

Remember our “coding chain”, knowing the acceleration allows us to update the velocity, and knowing the 

velocity allows us to update the displacement. When we have the displacement then we know how the 

object moves. In this case we have two displacements, the linear displacement of the cart, and the angular 

displacement of the pendulum on the cart. 

 

So from the angular acceleration we can calculate the rotation of the pendulum 

 

∆𝜔 = 𝛼∆𝑡 

∆𝜃 = 𝜔∆𝑡 

 

and from the linear acceleration we can calculate the movement of the cart 

 

∆𝑣𝑥 = 𝑎𝑥∆𝑡 

∆𝑥 = 𝑣𝑥∆𝑡 

 

Now let’s think about the control loop, here’s the diagram

 
 

The set point angle is zero, we want the pendulum to be vertical. The sensor measures the angle of the 

pendulum and the controller takes the error and applies a force to the cart (by moving its wheels). It is 

interesting (and vital) to see how this force F appears in the above expression for linear acceleration (we 

expect this since the cart is being forced) but it also appears in the expression for the angular acceleration 

(unexpected perhaps, but reasonable, since the cart is joined to the pendulum). 

  



 

Some Detail 

 

First a reminder about the notation for translational and rotational movement: 

 

 
 

Let’s derive the equations we presented above. Consider the diagram below.  

 

 
 

First the rotation about the centre of mass of the pendulum. The torque on the pendulum due to force V in 

the clockwise sense is calculated as force times the perpendicular distance to the centre of rotation. 

 

𝑉𝐿𝑠𝑖𝑛𝜃 

 

The torque in the anticlockwise sense due to the horizontal force from the cart is 

 

𝐻𝐿𝑐𝑜𝑠𝜃 

 

The total torque is the sum of these and produces angular acceleration 𝛼, 

 

𝐼𝛼 =  𝑉𝐿𝑠𝑖𝑛𝜃 −  𝐻𝐿𝑐𝑜𝑠𝜃 

 

where I is the moment of inertia of the pendulum. When the pendulum is almost vertical (where it should 

be) then 𝜃 is small therefore 𝑠𝑖𝑛𝜃 ≈ 𝜃 and  𝑐𝑜𝑠𝜃 ≈ 1  so the above equation can be approximated to 

 

𝐼𝛼 =  𝑉𝐿𝜃 −  𝐻𝐿 

 

Translation Rotation 

Force F Torque 𝜏 

Acceleration a Angular Acceleration 𝛼 

Velocity v Angular Velocity 𝜔 

Displacement z Angle 𝜃 

Mass m Moment of Inertia I 

 



Since the mass it concentrated at the top of the pendulum, the centre of mass is located here and for this 

case we can assume that 𝐼 ≈ 0 so the above equation becomes 

𝑉𝜃 = 𝐻 (1) 

 

Now we need to consider the horizontal motion of the centre of mass of the pendulum. If the pendulum is 

almost vertical then we have 

𝑚𝑎 + 𝑚𝐿𝛼 = 𝐻 (2) 

 

The first term on the left is just the usual linear acceleration, but we must add on an extra acceleration 

because of the pendulum’s rotation, that is the second term. Angular and linear acceleration are related by 

the expression 𝑎 = 𝛼𝐿. 

 
 

There is very little vertical motion since the pendulum is almost vertical, the vertical force is due to gravity 

 

𝑉 = 𝑚𝑔 (3) 

 

Finally we consider the horizontal motion of the cart 

 

𝑀𝑎 = 𝐹 − 𝐻 (4) 

 

Now for a little algebra. From (1) and (3) we find that 

 

𝐻 = 𝑚𝑔𝜃 

 

and putting this into (4) we find the equation for linear acceleration is  

 

𝑀𝑎 = 𝐹 − 𝑚𝑔𝜃 

Putting this into (2) we end up with 

 

𝑀𝐿𝛼 = (𝑀 + 𝑚)𝑔𝜃 − 𝐹 

 

To understand how these equations work, we solve them for the angular acceleration of the bob and the 

linear acceleration of the cart which result in the equations we code for the system dynamics. 

 

𝛼 =
(𝑀 + 𝑚)

𝑀𝑙
𝑔𝜃 −

1

𝑀𝑙
𝐹 

𝑎 =  −
𝑚

𝑀
𝑔𝜃 +

1

𝑀
𝐹 



 

Consider the first expression. The first term in this expression shows how gravity causes 𝜃 to increase, 

proportional to the value of 𝜃, in other words the pendulum rotates away from its desired vertical position. 

On its own, it is unstable. The second term involving F is negative, in other words the applied force F causes 

𝜃 to decrease, moving it to the desired vertical position, which is what we want. So our controller must 

provide F in this term. 

 

Consider the second expression. The first term shows that the pendulum reduces the displacement x of the 

cart, but the force F in the second term causes x to increase, which is as expected. Together, these terms 

can reduce the acceleration of the cart to zero, so it achieves stability. 

 

Enter the Controller 

 

Now let’s see what happens when we use a proportional controller to provide the force F based on the 

error between desired and actual angles. The proportional controller’s control signal is defined by the 

usual expression 

𝑢 = 𝐾𝑝(𝜃𝑑𝑒𝑠 − 𝜃) 

 

which, since the desired angle is zero reduces to 

 

𝑢 = −𝐾𝑝𝜃 

 

If we used this control signal as the force, then the second term in the expression for angular acceleration 

would become positive, rendering the motion of the pendulum even more unstable, since this extra force 

would cause 𝜃 to increase even more. Also the expression for the cart’s acceleration could never become 

zero, so the motion of the cart would be unstable. We therefore conclude that the applied force F should 

be the opposite of the control signal u. 

 

Therefore, for the general PD controller described by the expression 

 

𝑢 = 𝐾𝑝(𝜃𝑑𝑒𝑠 − 𝜃) +  −𝐾𝑑𝜔 

 

the applied force in the above equations should be 

 

𝐹 = −𝑢 

 

Some Interesting (and important) Results. 

 

1. Pendulum Stability for the Proportional Controller 

 

If we put the expression for the proportional control into the expression for angular acceleration then we 

find 

𝛼 =
(𝑀 + 𝑚)

𝑀𝑙
𝑔𝜃 +

1

𝑀𝑙
𝐾𝑝(𝜃𝑑𝑒𝑠 − 𝜃) 



 

Now let us consider a small change in angle ∆𝜃 and the corresponding change in angular acceleration ∆𝛼 

 

∆𝛼 =
(𝑀 + 𝑚)

𝑀𝑙
𝑔∆𝜃 −

1

𝑀𝑙
𝐾𝑝∆𝜃 

 

Now assume the pendulum is at the top, and it starts to rotate, so ∆𝜃 > 0. We want ∆𝛼 < 0 ie the 

pendulum accelerates in the opposite direction to cancel out the rotation. How can this happen? Well the 

first term is positive, so the angular acceleration increases, but the second term is negative, it is this term 

which restores the pendulum to the top. 

 

So for stability, the second term must be larger than the first term, in other words 

 

𝐾𝑝 > (𝑀 + 𝑚)𝑔 

 

This is an important result since it fixes the minimum value of 𝐾𝑝. 

 

2. Relation between desired angle and the cart movement. 

 

Here we consider the case where the desired angle 𝜃𝑑𝑒𝑠 > 0, in other words we are forcing the pendulum 

to move away from the vertical. If the controller is working to make the pendulum stable at this angle then 

its angular acceleration is zero. Then taking the expression for the angular acceleration of the cart 

 

𝑎 =  −
𝑚

𝑀
𝑔𝜃 +

1

𝑀
𝐾𝑝(𝜃𝑑𝑒𝑠 − 𝜃) 

 

and combining this with the expression for zero angular acceleration 

 

0 =
(𝑀 + 𝑚)

𝑀𝑙
𝑔𝜃 +

1

𝑀𝑙
𝐾𝑝(𝜃𝑑𝑒𝑠 − 𝜃) 

 

 

we find that the linear acceleration is 𝑎 = 𝑔 𝜃 in general. If the controller is working quickly then 𝜃 = 𝜃𝑑𝑒𝑠 

so we have 

 

𝑎 = 𝑔𝜃𝑑𝑒𝑠  

 

which is a useful expression which tells us that the linear acceleration is proportional to the amount we tilt 

the Segway. And here is a hidden devil Note that is no expression which relates the pendulum angle 

to the speed of the cart. So the cart can get any speed and, together with the pendulum, it may move off 

into the infinities of the universe, and we shall have to chase it there! 

 



 

 

How to Control the Segway’s velocity? 

 

Well, here’s the idea. We already have a controller which keeps the Segway upright. So we need a second 

controller to manage our desired speed. So we could ‘wrap’ the upright controller in the speed controller 

like this. 

 
 

So we generate a second error signal for the controller from a velocity sensor attached to the Segway, and 

the set-point desired velocity. 

 

Impulse Response 
This is the response of the Segway to an input impulse to the controller. It can be obtained by setting the 

initial and desired thetas to zero and adding the following line of code to the function computation() 

 

function computation(float dT) { 

  if(time < dT) u = 1.0; 

 

The theoretical response can be obtained by running the Octave script Segway_Spectral. The best way to 

compare the UDK and theoretical results is 

 

1) Run the UDK simulation and get a plot with 5 graphs. 

2) Kill the plot window 

3) Subsample your data like this 

 time1 = downsample(time,10); 

 omega1 = downsample(omega,10); 

4) Plot your downsampled data 

 plot(time1,omega1,’o’); 

5) type hold on 

6) Run the script Segway_Special inputting your values for Kp and Kd and a suitable end time. Here’s what 

I got 



 
  

You see the controller responds by driving the angular velocity of the pole which then makes the angle 

theta approach zero. 

 

A couple of notes: We plot omega not theta (the graph title is incorrect) since this is what Octave returns 

to us. Also the cart will zoom off into the distance. This is normal when we gather impulse response data. 

Here’s the Octave script 

 

M = 0.5; 

m = 0.2; 

b = 0.0; 

I = 0.000; 

g = 9.81; 

l = 0.3; 

 

q = (M+m)*(I+m*l^2)-(m*l)^2; 

s = tf('s'); 

P_pend = (m*l*s/q)/(s^3 + (b*(I + m*l^2))*s^2/q - ((M + m)*m*g*l)*s/q - b*m*g*l/q); 

 

Ki = 0; 

Kp = input('Input Kp '); 

Kd = input('Input Kd '); 

C = pid(Kp,Ki,Kd); 

T = feedback(P_pend,C); 

tEnd = input('End time '); 

t=0:0.1:tEnd; 

impulse(T,t); 


